Localization of the Sensory Neurons and Mechanoreceptors Required for Stretch-Evoked Colonic Migrating Motor Complexes in Mouse Colon
نویسندگان
چکیده
The pacemaker and pattern generator that underlies the cyclical generation of spontaneous colonic migrating motor complexes (CMMCs) has recently been identified to lie within the myenteric plexus and/or muscularis externa. Neither the mucosa, nor the release of substances from the mucosa were found to be required for the spontaneous generation of CMMCs. However, it is known that stretch applied to the colonic wall can also evoke CMMCs and since stretch of the gut wall is known to stimulate the mucosa, it is not clear whether release of substances from the mucosa and/or submucosal plexus are required for stretch-evoked CMMCs. Therefore, the aim of this study was to determine whether circumferential stretch-evoked CMMCs require the presence of the mucosa and/or submucosal plexus in isolated mouse colon. Spontaneous CMMCs were recorded from full length sheet preparations of colon in vitro. Graded circumferential stretch (at a rate of 100 μm/s) applied to a 15-mm segment of mid-distal colon reliably evoked a CMMC, which propagated to the oral recording site. Sharp dissection to remove the mucosa and submucosal plexus from the entire colon did not prevent spontaneous CMMCs and circumferential stretch-evoked CMMCs were still reliably evoked by circumferential stretch, even at significantly lower thresholds. In contrast, in intact preparations, direct stimulation of the mucosa (without accompanying stretch) proved highly inconsistent and rarely evoked a CMMC. These observations lead to the inescapable conclusion that the sensory neurons activated by colonic stretch to initiate CMMCs lie in the myenteric plexus, while the mechanoreceptors activated by stretch, lie in the myenteric ganglia and/or muscularis externa. Stretch activation of these mechanoreceptors does not require release of any substance(s) from the mucosa, or neural inputs arising from submucosal ganglia.
منابع مشابه
Does the Mucosa Activate or Modulate the Neural Circuits Controlling Colonic Motility?
in the nerves, muscle, mucosa, and support cells throughout the colon. Thus, one impediment is that researchers have been spoilt for choice when investigating potential mechanisms underlying functional bowel diseases like STC. Significant transit of contents in the human colon is thought to occur mainly during so-called “high amplitude propagating contractions,” the correlate of which in animal...
متن کاملMechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells?
The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT relea...
متن کاملDeletion of P2X2 and P2X3 Receptor Subunits Does Not Alter Motility of the Mouse Colon
Purinergic P2X receptors contribute to neurotransmission in the gut. P2X receptors are ligand-gated cation channels that mediate synaptic excitation in subsets of enteric neurons. The present study evaluated colonic motility in vitro and in vivo in wild type (WT) and P2X2 and P2X3 subunit knockout (KO) mice. The muscarinic receptor agonist, bethanechol (0.3-3 muM), caused similar contractions o...
متن کاملCircumferential, not longitudinal, colonic stretch increases synaptic input to mouse prevertebral ganglion neurons.
The relationship between longitudinal and circular muscle tension in the mouse colon and mechanosensory excitatory synaptic input to neurons in the superior mesenteric ganglion (SMG) was investigated in vitro. Electrical activity was recorded intracellularly from SMG neurons, and muscle tension was simultaneously monitored in the longitudinal, circumferential, or both axes. Colonic intraluminal...
متن کاملEffects of oxaliplatin on mouse myenteric neurons and colonic motility
Oxaliplatin, an anti-cancer chemotherapeutic agent used for the treatment of colorectal cancer, commonly causes gastrointestinal side-effects such as constipation, diarrhoea, nausea, and vomiting. Damage to enteric neurons may underlie some of these gastrointestinal side-effects, as the enteric nervous system (ENS) controls functions of the bowel. In this study, neuronal loss and changes to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011